Терморегулятор для водяного электрокотла

208
0
ПОДЕЛИТЬСЯ
termodatchik-400x204-4518139

Часто случаются ситуации, когда ни центральное отопление ни индивидуальные газовые котлы не доступны: например в поле стоит небольшое помещение насосной станции водопровода, и там круглосуточно дежурит человек. Это может быть даже караульная вышка или отдельная комната в большом пустом здании. Таких примеров много можно найти.
Во всяком случае приходится делать отопление от электричества. Если помещение мало, то можно обойтись обычным бытовым масляным электрическим радиатором. Для комнаты площадью около 15 — 20 квадратных м. чаще всего отопление делают водяное, радиаторное, сваренного из труб, который называют регистром.

termodatchik-400x204-4518139

Если не следить за температурой воды, то рано или поздно она просто закипит и дело может закончиться выходом из строя всего котла, в первую очередь его нагревательного элемента. Чтобы такого досадного случая не произошло, температура нагрева управляется терморегулятором.
Функционально устройство можно разделить на несколько узлов: датчик температуры, сравнивающее устройство (компаратор) и устройство управления нагрузкой. Далее следует описание отдельных частей, их схема и принцип работы.

Отличительной особенностью описываемой конструкции является то, что в качестве датчика температуры используется обычный биполярный транзистор, что позволяет отказаться от поиска и приобретения терморезисторов или датчиков различных типов, например ТСМ.
Работа такого датчика основана на том, что, как и у всех полупроводниковых приборов, параметры транзисторов в немалой степени зависят от температуры окружающей среды. В первую очередь это обратный ток коллектора, который с повышением температуры возрастает, что сказывается отрицательно на работе, например, усилительных каскадов. Их рабочая точка смещается настолько, что возникают значительные искажения сигнала, и в дальнейшем транзистор просто перестает реагировать на входной сигнал.
Такая ситуация присуща в основном схемам с фиксированным током базы. Поэтому, применяются схемы транзисторных каскадов с элементами обратной связи, которые стабилизируют работу каскада в целом, и в том числе снижают воздействие температуры на работу транзистора.
Такая температурная зависимость наблюдается не только у транзисторов, но и у диодов. Чтобы в этом убедиться достаточно с помощью цифрового мультиметра «прозвонить» любой диод в прямом направлении. Как правило, прибор покажет цифру близкую к 700. Это как раз прямое падение напряжения на открытом диоде, которое прибор показывает в милливольтах. Для кремниевых диодов при температуре 25 градусов Цельсия этот параметр составляет приблизительно 700 мВ, а для германиевых диодов около 300.
Если теперь этот диод немного подогреть, хотя бы паяльником, то эта цифра будет постепенно уменьшаться, поэтому считается, что температурный коэффициент напряжения у диодов -2мВ/град. Знак «минус» в данном случае указывает на то, что с повышением температуры прямое напряжение на диоде будет уменьшаться.
Такая зависимость также позволяет использовать диоды в качестве датчиков температуры. Если тем же прибором «прозвонить» переходы транзистора, то результаты будут очень похожи, поэтому транзисторы достаточно часто применяются в качестве датчиков температуры.
В нашем случае работа всего терморегулятора как раз и основана на этом «отрицательном» свойстве каскада с фиксированным током базы. Схема терморегулятора показана на рисунке 1.

Датчик температуры собран на транзисторе VT1 типа КТ835Б. Нагрузкой этого каскада является резистор R1, а резисторы R2, R3 задают режим работы транзистора по постоянному току. Фиксированное смещение, о котором упоминалось чуть выше, задается резистором R3 таким образом, чтобы напряжение на эмиттере транзистора при комнатной температуре составляло около 6,8 В. Поэтому на схеме в обозначении этого резистора присутствует звездочка (*). Особой точности тут добиваться не надо, лишь бы не было это напряжение намного меньше или больше. Измерения следует проводить относительно коллектора транзистора, который соединен с общим проводом источника питания.

Транзистор структуры p-n-p КТ835Б выбран не случайно: его коллектор соединен с металлической пластиной корпуса, которая имеет отверстие для крепления транзистора на радиатор. За это отверстие транзистор крепится к небольшой металлической пластине, к которой также крепится подводящий провод.

Получившийся датчик крепится с помощью металлических хомутов к трубе системы отопления. Поскольку, как уже отмечалось, коллектор соединен с общим проводом источника питания, между трубой и датчиком не потребуется ставить изолирующую прокладку, что упрощает конструкцию и улучшает тепловой контакт.

Для задания температуры служит компаратор, выполненный на операционном усилителе ОР1 типа К140УД608. Через резистор R5 на его инвертирующий вход подается напряжение с эмиттера транзистора VT1, а на неинвертирующий вход через резистор R6 подается напряжение с движка переменного резистора R7.
Это напряжение задает температуру, при которой будет отключаться нагрузка. Резисторами R8, R9 задаются верхний и нижний диапазон установки порога срабатывания компаратора, а следовательно пределы регулирования температуры. С помощью резистора R4 обеспечивается необходимый гистерезис срабатывания компаратора.

Устройство управления нагрузкой выполнено на транзисторе VT2 и реле Rel1. Здесь же находится индикация режимов работы терморегулятора. Это светодиоды HL1 красного цвета, и HL2 зеленого. Красный цвет означает нагрев, а зеленый, что заданная температура достигнута. Диод VD1, включенный параллельно обмотке реле Rel1, защищает транзистор VT2 от напряжений самоиндукции, возникающих на катушке реле Rel1 в момент отключения.

termoregulyator-kotla-4382678

Современные малогабаритные реле позволяют коммутировать достаточно большие токи. Примером такого реле может служить реле фирмы Tianbo, показанное на рисунке 2.

Как видно на рисунке реле допускает коммутацию тока до 16А, что позволяет управлять нагрузкой мощностью до 3Квт. Это максимальная нагрузка. Чтобы несколько облегчить режим работы контактной группы, мощность нагрузки следует ограничить на уровне 2…2,5 КВт. Такие реле в настоящее время применяются очень широко в автомобильной и бытовой технике, например, в стиральных машинах. При этом габариты реле не превышают размеров спичечного коробка!

Работа и наладка терморегулятора:

Как было сказано в начале статьи, при комнатной температуре напряжение на эмиттере транзистора VT1 около 6,8 В, а при нагревании до 90°C напряжение понижается до 5,99 В. Для проведения подобных опытов в качестве нагревателя подойдет настольная лампа с металлическим абажуром, а для измерения температуры китайский цифровой мультиметр с термопарой, например DT838. Если датчик собранного устройства укрепить на абажуре, а лампу включить через контакт реле, то можно будет на такой установке проверить работу собранной схемы.

Работа компаратора построена таким образом, что если напряжение на инвертирующем входе (напряжение термодатчика) выше, чем напряжение на входе неинвертирующем (напряжение установки температуры), на выходе компаратора напряжение близко к напряжению источника питания, в данном случае его можно назвать логической единицей. Поэтому транзисторный ключ VT2 открыт, реле включено, и контакты реле включают нагревательный элемент.

По мере разогрева отопительной системы нагревается и датчик температуры VT1. Напряжение на его эмиттере с ростом температуры понижается, и когда оно станет равно, а точнее чуть меньше, чем напряжение, установленное на движке переменного резистора R7, компаратор переходит в состояние логического нуля, поэтому транзистор запирается и реле отключается.

Нагревательный элемент обесточивается, и радиатор начинает остывать. Транзисторный датчик VT1 также остывает, а напряжение на его эмиттере повышается. Как только это напряжение станет выше, чем установлено резистором R7 компаратор перейдет в состояние высокого уровня, реле включится и процесс повторится снова.

Немного о работе схемы индикации, точнее о назначении ее элементов. Светодиод HL1 красного цвета включается вместе с обмоткой реле Rel1, и указывает на то, что происходит нагрев отопительной системы. В это время транзистор VT2 открыт, и через диод D2 шунтирует светодиод HL2, зеленый свет погашен.

Когда заданная температура будет достигнута, транзистор закроется и отключит реле, а вместе с ним красный светодиод HL1. В то же время закрытый транзистор перестанет шунтировать светодиод HL2, который зажжется. Диод D2 необходим для того, чтобы светодиод HL1, а вместе с ним и реле не могли включиться через светодиод HL2. Светодиоды подойдут любые, поэтому их тип не указан. В качестве диодов D1, D2 вполне подойдут широко распространенные импортные диоды 1N4007 или отечественные КД105Б.

Потребляемая схемой мощность невелика, поэтому в качестве блока питания можно использовать любой сетевой адаптер китайского производства, либо собрать стабилизированный выпрямитель на 12В. Ток потребления схемы не более 200мА, поэтому подойдет любой трансформатор мощностью не более 5Вт и выходным напряжением 15…17В.

termoregulyator-kotla2-400x141-8464255

Схема блока питания изображена на рисунке 3. Диодный мост выполнен также на диодах 1N4007, а стабилизатор напряжения +12В на интегральном стабилизаторе типа 7812. Потребляемая мощность мала, поэтому крепить стабилизатор на радиатор не требуется.

НЕТ КОММЕНТАРИЕВ

ОСТАВЬТЕ ОТВЕТ